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2 INTRODUCTION 

 

Given the analog hall sensors currently have significant distortion, which varies with rotor speed, it is considered 
problematic to attempt an analog quadrature rotor angle calculation.  When the motor design can accommodate 
minimal distortion, it would be advantageous to re-consider. 

To achieve a function rotor angle for commutation, the approach will be to digitize the analog sensor feedback near 
the zero-reference point with hysteresis, to provide rotor angle position updates.  These form an angle update 
correction.  The rate of updates will then be used to determine the rotation speed to enable faster periodic 
calculated rotor position.  For commutation control, the rotor angle needs to be updated at a faster rate and with 
significantly more electrical rotation points.  Otherwise, the commutation will be severely limited and sector 
rotation to use all phases will not be possible.   

An extension to this is to calculate the acceleration to improve the dynamic performance response. 
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3 HALL SENSOR QUADRATURE UPDATES 

 

The first stage is to quantize the analog hall sensor data to produce quadrature state changes.  These state changes 
provide the feedback to update the rotor angle with a measured known position at the time of the change.  The rate 
of these state changes will later be used calculate updates at a higher rate to support sector rotation. 

 

3.1 ROTOR ELECTRICAL ANGLE 

 

The previously defined 0 degree electrical angle is shown in the diagram below.  The hall sensors are positioned 90 
electrical degrees apart, to the midline for bars 7 (Hall Sensor A) and 11 (Hall Sensor B).  The bars are 360/16 = 22.5 
degrees apart.  Given the hall sensors are positioned midline to the bars, they have an offset of ½ a bar, 11.25 
degrees.  The peak field intensity at 0 degrees occurs between bars 7 to 8 and 0 to 15 on adjacent segments.  
Therefore, Hall Sensor A will have an 11.25 degree offset to the peak field with the rotor at 0 electrical degrees. 
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3.2 ROTOR TO HALL SENSOR RELATIONSHIP 

 

The mathematical relationship between electrical angle  and magnetic field sensed by the hall sensors 

_ , _  is given below. 
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The graph below shows the analog hall sensors _ , _  with their digitized logic transitions with hysteresis 
based on the parameters previously defined. 

 

 

3.3 QUADRATURE TRANSITION STATE TABLE 

 

The transitions are defined in the follow logic table, along with resulting angle updates. 

 

Double state changes are considered invalid.   
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Digital Conversion of Hall Sensors with Hysteresis

A B A Digital B Digital

Quadrature Transistion State Table
A(t-1) B(t-1) A B Angle Direction

0 0 0 0 - -
0 0 0 1 190.07    Reverse
0 0 1 0 280.07    Forward
0 0 1 1 - -
0 1 0 0 190.07    Forward
0 1 0 1 - -
0 1 1 0 - -
0 1 1 1 100.07    Reverse
1 0 0 0 280.07    Reverse
1 0 0 1 - -
1 0 1 0 - -
1 0 1 1 10.07      Forward
1 1 0 0 - -
1 1 0 1 100.07    Forward
1 1 1 0 10.07      Reverse
1 1 1 1 - -
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3.4 TRANSITION STATE TABLE FILTERING 

 

A good filter to consider is one that does not allow the state to reverse direction without a minimum period being 
exceeded.  This increases the robustness to noise.  This is particularly important for calculating the rotor velocity 
and acceleration, as errant state changes will have a significant impact on their calculation.  An alternative simple 
filter is to lockout the quadrature quantization for a minimum period after a state change.  Given the maximum 
electrical RPM is 49,000, the maximum quadrature update rate is 60/49k/4 = 306us.  A practical generic lockout 
period of 100us would be realistic. 
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4 HALL SIGNAL TRACKING AND THRESHOLDS 

 

The following table represents preliminary example for operating parameters and voltage levels previously 
established from the analysis of the hall sensor performance.  In addition, an arbitrary +/-0.2V hysteresis has been 
specified.  Given the current magnetic field distortion, a low hysteresis is desirable.  Too low and analog noise may 
cause a false transition.  The level chosen is considered a balance, but also with enough significance to validate the 
math and identify correct operation. 

 

The quadrature rotor signals amplitude and DC offset will vary between builds.  An offset of 0.1V on one or both of 
the quadrature signals is sufficient to skew subsequent rotor angle estimations.  Therefore, independent tracking of 
each hall sensor is required to determine the amplitude and subsequent hysteresis thresholds dynamically.   

  

Parameter Unit Value
Phase Offset Deg 11.25
Hysteresis +/- V 0.200
Vz Zero Ref V 2.122
Low V 1.922
High V 2.322
Vp-p V 1.100
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4.1 HALL SIGNAL TRACKING ALGORITHM 

 

To track the AC signal from the hall sensor and subsequent derive the logic switching around the zero reference, a 
tracking algorithm is required.  The aim of the algorithm is to track the minimum and maximum of the signal.  This 
data can then be used to determine the zero reference for each hall signal, which the hysteresis threshold levels can 
then be dynamically determined. 

Both minimum and maximum filter need at least a minimum amount of filtering to ensure any outliers do not 
adversely impact the desired envelop.  A basic 4x IIR filter is used. 

These filters must also have an opposing convergence mechanism, otherwise the minimum and maximum values 
could not recover from the extents of perturbations or initial conditions.  This convergence additionally requires fast 
initial tracking.  However, during operation, much slower convergence is required for stable threshold transitions 
and smooth rotation output data.  Therefore, a dual rate convergence mechanism is used. 

The follow algorithm equations are for Hall Sensor A.  Implementation requires a second set of equations for 
tracking Hall Sensor B. 

 

4.1.1 OPERATING CONSTANTS 

 

_ = 0.5  Minimum range the minimum and maximum can converge too. 

_ = 1.25  When hall tracking range (max – min). 

_ = 2.0  Mid-voltage of hall sensor oscillation. 

= 0.2  Hysteresis between analog hall quantization. 

_ _ = 1.0  Maximum period between slow convergence updates. 

_ _ = 40.0  Maximum period between slow convergence updates. 

_ = 0.005  Convergence step size 
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4.1.2 INITIALISATION: 

To occur after the first A/D readings are obtained. 

_  = _  

_ =  _  +  

_ =  _ −
2

 

_ _ _ = 0 

_ _ _ = 0 

 

4.1.3 ALOGORITHM LOOP 

Convergence Timer Update 

Reduce convergence timers (if not zero) with last execution loop period. 

_ _ _ = max (0, _ _ _ −  )  

_ _ _ = max (0, _ _ _ −  )  

 

Maximum Signal Tracking 

4xIIR Peak Value Filter with dual convergence rate. 

_ = max ( _ −  _ , 0) 

If ( ≥ _ ) 

_   
( ∗ _   )

   4xIIR Track maximum value 

 elseif _ ≥ _ && _ _ _ == 0 

_   _ − 0.01    Fast Convergence 

_ _ _ =  _ _  

elseif _ ≥ _  && _ _ _ == 0 

_   _ − 0.01      Slow Convergence 

_ _ _ =  _ _  

 endif 
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Minimum Signal Tracking 

4xIIR Trough Value Filter with dual convergence rate. 

_ = max ( _ −  _ , 0) 

If  ≤ _  

_   
( ∗ _   )

    4xIIR Track maximum value 

 elseif  _ ≥ _  && _ _ _ == 0 

_   _ + 0.01      Fast Convergence 

_ _ _ =  _ _  

elseif  _ ≥ _  && _ _ == 0 

_   _ + 0.01      Slow Convergence 

_ _ _ =  _ _  

 endif 

 

Maintain minimum range. 

This ensures a minimum distance for realistic and quicker convergence. 

_ = max ( _ −  _ , 0) 

 If  _ < _  

 _ = _ +  _  

 endif 
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Hall Signal Thresholds 

Calculated mid-point of the signal. 

_ _ =  _ _ + _   

Calculate current thresholds. 

_ _ = _ _ +   

_ _ = _ _ −   

Note: The _ _  output can be used by the start/stop rotor angle calculation. 
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4.2 HALL SIGNAL TRACKING ALGORITHM SIMULATION 

The algorithm was implemented in octave.  Below shows the quadrature signals with one having an additional 0.3V 
offset.  Convergence rates increased to 1ms/10ms/10mV for demonstration only.  In addition, initial conditions 
were not set to force/test large range adaption.  Annotation and dashed plots with respect to Hall A only. 
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Example using captured date, fast acceleration. 
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5 ROTOR ANGLE UPDATE 

 

4 rotor angle updates per electrical rotation from the quadrature sensors is not sufficient for commutation.  Sector 
rotation logic has 16 states and the resolution should at least be 10 times this requirement.  To accommodate the 
faster rotor angle updates, the period between the quadrature updates can be measured and the rate of change 
can be used to periodic update a calculated position.  More specifically, the rotor velocity and acceleration can be 
calculated to applying calculated rotor updates. 

Hence, the quadrature state updates are responsible for synchronizing to the hall sensor feedback at 4 points in the 
electrical rotation.  At other times the rotor angle is updated from calculation, based on the rate of quadrature 
updates. 

The requirement is to measure the period between successive quadrature state updates, as well as the delta for 
rotation.  Then calculate the velocity and acceleration and apply at a higher update rate. 

 

Period (seconds) 
dRotor_Angle_Period = Current Time - Rotor_Last_Correction_Time 
 

Velocity (angle/second) 
Rotor_Angle_Velocity = dRotor_Angle / dRotor_Angle_Period 

 
Acceleration (angle/second/second) 

Rotor_Angle_Acceleration = (Rotor_Angle_Velocity - Rotor_Angle_Velocity(t-1)) / dRotor_Angle_Period 

 

The rate of updates can be applied at the PWM period.  These updates can then drive the sector rotation for bar 
current control. 

 

Rotor Update 

Rotor_Angle = Rotor_Angle + Rotor_Angle_Velocity * PWM_Period + Rotor_Angle_Acceleration * PWM_Period^2 
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6 SIMULATION 

 

Using simulated hall sensor data, the logic was implemented in Octave.  The first plot shows the quadrature analog 
sensor feedback, with red dashed lines denoting the hysteresis levels.   The second plot shows the quantized hall 
sensor data, based on hysteresis used.  The third plot shows the output of the quadrature transition state table, 
where the 4 angle updates can be see in blue and the direction in orange (high = forward).  The last plot shows the 
resulting rotor angle in blue, with the rate angle calculation applied.  The purple line is a reference based on the 
original analog hall sensor data, generated by a quadrant determination and reverse calculation.  It is noticeable the 
rotor angle in blue begins tracking after the period of state updates can measured. 

 

  



 

 

© Electric Vehicle System Technology  Page 17 of 41 

 

The example below is simulated data, with reverse rotation. 
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Sample data from the motor rotating slowly.  Hall sensor data has low distortion.  The blue rotor angle line is quite 
good.  Notice the purple line calculated from the analog data is less ideal, due to the distortion. 
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Sampled data from the motor rotating at a fast rate.  The rotor angle calculation is looking quite consistent, despite 
the sensor distortion.  The purple calculated angle from the analog data has a lot more noise. 
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Sampled data from the motor rotating at a relative fast rate, in the reverse direction. 
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Sampled data from the stationary motor accelerating in rotation, ~5 seconds. 
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The following plot show a close up of the first ~2.5 seconds.  Not noticeable clipping or jagged corrections. 
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Sampled data from a rotating motor decelerating to a stationary position. 
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Close up of the deceleration.  Minor angle reversals observed.  A refinement to the angle update would be to only 
apply updates in the continuous direction of established rotation.  This would result in an increasing or decreasing 
stepped result, rather than a sharp temporary reversal. 

 

 

The quadrature updates that generate the angular velocity and acceleration for the deceleration test is shown 
below.  The acceleration parameter (orange) has very little contribution to the rotor angle tracking for this example.  
It will likely only contribute with significance during higher levels of dynamic performance. 

 

 

  



 

 

© Electric Vehicle System Technology  Page 25 of 41 

 

7 COMMENTS 

 

The approach taken to quantized the hall sensor data and generate updates has generated robust results from 
sampled data.  It is expected to accommodate the magnetic field distortion and accommodate higher levels of 
noise. 

This approach will also suit using latched digital hall sensors.  The advantage is these do not require ADC inputs that 
require sampling.  Instead, they can be used with digital inputs at higher rates and with less processor overhead.  
Preferably associated with a quadrature peripheral. 

The current implementation uses measured analog hall sensor data as constants.  However the machine will have 
variability.  The Vz zero reference and Vpp peak to peak values will vary due to electrical tolerances, magnet 
strength and mechanical tolerance and property differences.  A robust approach would be to have an adaptive Vz 
and Vpp for each hall sensor. 

Sample data from the motor was used to validate the method.  This data was collected for the motor rotating 
slowly, fast, in different directions and with both acceleration and deceleration.  The fastest observed operation had 
~23 electrical rotations in 1.0 seconds.  23/(7_segments) = 197rpm.   Therefore, the term “fast” is based on the 
limits of a cordless drill system.  Testing was not possible through the target 7000rpm range. 

 

The Octave source code has been written with the intent for being a pseudo code reference.  The code is in a time 
indexed sequential format, not matrixed operations.  Conditional if-then logic is used and processing separated into 
functional blocks.   

The key blocks to implement the system are: 

1. Hall Sensor Logic Translation 
2. Quadrature Transition State Machine 
3. Rotor Angle Update 
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8 ROTOR ANGLE START/STOP 

 

The following requirement is to support rotor angle detection/tracking during start/stop conditions, where the slow 
or non-existent rotor movement is not sufficiently triggering hall effect transition points for the rotor angle 
estimation to function accurately.  This includes establishing an initial system power on start-up angle.  In addition, 
during motor stopping events, the estimator could persist and run-away with old non-zero velocity and acceleration 
data. 

The quadrature analog hall sensors provide feedback that could be used to determine rotors electrical position, 
however previously this analog data is quantized due to the significant signal distortion.  An important distinction is 
that at zero or near zero rotation speed, the distortion is relatively low.  It is anticipated that using the analog data 
will provide the most accurate tracking of rotor position at this very low or zero speed.  This follows the original 
intent of using analog hall sensors, where absolute rotor position is known for start/stop transitions. 

 

8.1 TRIGONOMETRIC ANGLE CALCULATION 

 

Trigonometry and sector classification can be used to derive the rotor angle from the quadrature hall feedback.  This 
will be referred to as “Quadrature rotor angle tracking”.  Angle tracking the abbreviated phase.  The following Ra 
and Rb calculations are used conditionally to derive the electrical angle. 

 

=  
360
2

cos (
2

1.1
( − _ ) 

=  
360
2
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2

1.1
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⎩
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                   ℎ  <   ≥
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The TMS320F280049 incorporates a Trigonometric Math Unit (TMU), which provides an extended instruction set for 
the following functions. 

 

 

The equations require asin, acos and the square root function.  Unfortunately, asin and acos are not supported by 
the TMU, however it does support atan. 

 

There is a mathematical equivalent for calculating asin and acos as a function of atan and square root (see below, 
Wiki).  However, the acos equivalent is suited for geometric positive inputs, not negative inputs.  This can be 
corrected for the application by negating and adding a positive offset for the specific negative input quadrant. 

 

 

An additional intermediate variable is added to the calculations to accommodate the asin & acos functions.  Also 
included is appropriate logic to boundary check the values to avoid erroneous and out of range calculations. 

= lim
  

2
1.1

( − _  

= lim
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Limits applied to prevent division by zero, as well as very high numbers. 

=
10000                 ℎ  = 0

   
1 −

          ℎ  > 0
          

=

⎩
⎪
⎨

⎪
⎧−10000                 ℎ  = −1

10000                  ℎ  = 1

   
1 −

          ℎ  > 0
          

Calculation using atan function and adjustment for acos negative quadrant results… 

= 180 − 
360
2

( ) 

=
360
2

( ) 

The same conditional output equations apply for determining which quadrant is active to derive the angle. 
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8.2 SIMULATION 

 

The equations and associated logic were implemented in Excel.  Also implemented where simulated hall sensor 
outputs.  The motor direction and RPM can be is user controlled by the green fields.   

 

 

 

 

  

Variable Speed.  Controlled by RPM
Recommend to configure a switch for the "Direction" and a dial for "Speed", where Dial ADC 0..4095 is scaled 0 to 7000rpm.

Hall Sensor
Nominal V 2.122
Hysteresis V 0.1
Upper Threshold V 2.222
Lower Threshold V 2.022
Time period us 50 Update period

Direction -1 Direction = 1 or -1
Speed RPM 25.71429 Electrical rotation speed = 0 to 7000.  60/7 = 1ERPS
Speed ERPS 3.00 Hz

Time (seconds) Hall_A Hall_B
0.000000 2.122 1.572
0.000050 2.123 1.572
0.000100 2.123 1.572
0.000150 2.124 1.572
0.000200 2.124 1.572
0.000250 2.125 1.572
0.000300 2.125 1.572
0.000350 2.126 1.572
0.000400 2.126 1.572
0.000450 2.127 1.572
0.000500 2.127 1.572

Answer Answer Answer
Time (seconds) Hall_A Hall_B RA RB If-then 1 if-then 2 if-then 3 else Angle Xa Va acos(Va) Ra Xb Vb asin(Vb) Rb If-then 1 if-then 2 if-then 3 else Angle Angle

0.000000 2.122 1.572 90 -90 0 270 0 0 270 0 10000 1.570696327 269.9942704 -1 -10000 -1.57069633 -89.9942704 0 270.0057 0 0 270.0057 270.0057
0.000050 2.123 1.572 89.946 -89.946 0 270.054 0 0 270.054 0.000942478 1061.03264 1.569853849 269.946 -0.99999956 -1061.03264 -1.56985385 -89.946 0 270.054 0 0 270.054 270.054
0.000100 2.123 1.572 89.892 -89.892 0 270.108 0 0 270.108 0.001884954 530.5158487 1.568911371 269.892 -0.99999822 -530.515849 -1.56891137 -89.892 0 270.108 0 0 270.108 270.108
0.000150 2.124 1.572 89.838 -89.838 0 270.162 0 0 270.162 0.00282743 353.6767088 1.567968893 269.838 -0.999996 -353.676709 -1.56796889 -89.838 0 270.162 0 0 270.162 270.162
0.000200 2.124 1.572 89.784 -89.784 0 270.216 0 0 270.216 0.003769902 265.2569818 1.567026416 269.784 -0.99999289 -265.256982 -1.56702642 -89.784 0 270.216 0 0 270.216 270.216
0.000250 2.125 1.572 89.73 -89.73 0 270.27 0 0 270.27 0.004712372 212.20502 1.566083938 269.73 -0.9999889 -212.20502 -1.56608394 -89.73 0 270.27 0 0 270.27 270.27
0.000300 2.125 1.572 89.676 -89.676 0 270.324 0 0 270.324 0.005654837 176.8369407 1.56514146 269.676 -0.99998401 -176.836941 -1.56514146 -89.676 0 270.324 0 0 270.324 270.324
0.000350 2.126 1.572 89.622 -89.622 0 270.378 0 0 270.378 0.006597297 151.5739372 1.564198982 269.622 -0.99997824 -151.573937 -1.56419898 -89.622 0 270.378 0 0 270.378 270.378
0.000400 2.126 1.572 89.568 -89.568 0 270.432 0 0 270.432 0.007539751 132.626606 1.563256504 269.568 -0.99997158 -132.626606 -1.5632565 -89.568 0 270.432 0 0 270.432 270.432
0.000450 2.127 1.572 89.514 -89.514 0 270.486 0 0 270.486 0.008482198 117.889723 1.562314027 269.514 -0.99996403 -117.889723 -1.56231403 -89.514 0 270.486 0 0 270.486 270.486
0.000500 2.127 1.572 89.46 -89.46 0 270.54 0 0 270.54 0.009424638 106.1001538 1.561371549 269.46 -0.99995559 -106.100154 -1.56137155 -89.46 0 270.54 0 0 270.54 270.54
0.000550 2.128 1.572 89.406 -89.406 0 270.594 0 0 270.594 0.01036707 96.45408549 1.560429071 269.406 -0.99994626 -96.4540855 -1.56042907 -89.406 0 270.594 0 0 270.594 270.594
0.000600 2.128 1.572 89.352 -89.352 0 270.648 0 0 270.648 0.011309492 88.41564289 1.559486593 269.352 -0.99993605 -88.4156429 -1.55948659 -89.352 0 270.648 0 0 270.648 270.648
0.000650 2.129 1.572 89.298 -89.298 0 270.702 0 0 270.702 0.012251905 81.61383542 1.558544115 269.298 -0.99992494 -81.6138354 -1.55854412 -89.298 0 270.702 0 0 270.702 270.702

Angle Test
Calculation

with asin, acos RA calculated with TMU functions RB calculated with TMU functions Case LogicCase Logic
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The black plot shows the angle operating cleanly between 0 to 360 degrees (secondary scale on right).  The math 
was tested for both forward and reverse rotor directions. 
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8.3 IMPLEMENATION 

 

At any one time, only Ra or Rb needs to be calculated.  Not both.  The quadrant classification should be done first to 
determine whether Ra or Rb needs to be calculated. 

=

⎩
⎪
⎨

⎪
⎧                    ℎ  ≥   ≥

+ 360      ℎ  ≥   <

                   ℎ  <   ≥
360 −       ℎ  ( <   < )

 

 

Reference was found on the TI E2E forums regarding the calculation of asin and acos using the same technique and 
TMU.  The code below was in reference to: “These should compute in ~60 cycles with --fp_mode = relaxed and 
optimization off.” 

 

volatile float x = 0.6513246f; 
volatile float v, a, b; 
void main(void) 
{ 
// a = asinf(x) 
v = x / sqrtf(1 - (x*x)); 
a = atanf(v); 
 
// b = acosf(x) 
v = sqrtf(1 - (x*x)) / x; 
b = atanf(v); 

 

Also note, the TMU direct supports instructions for multiplication by 2  and division by 2 . 

o MPY2PIF32 
o DIV2PIF32 

  



 

 

© Electric Vehicle System Technology  Page 32 of 41 

 

8.4 TESTING 

 

8.4.1 SIMULATED HALL SENSOR DATA 

 

The following equations can be used to generated simulated hall sensor feedback of the motor rotating. 

_ ( ) =  
1.1
2

sin(2 ∗ ) + _  

( ) =  
1.1
2

sin 2 ∗ +
2
4

∗ +  

Where: 

 = -1, 1   (reverse, forwards) 

 = electrical rotations per second. 

 

These equations are also implemented in the Excel file. 

 

8.4.2 SIMULATED ROTOR SPEED/DIRECTION 

 

It is recommended to use the user controls on the diagnostic board to control the simulated hall sensor data.  
Configure a switch for the "Direction" and a dial for "Speed", where Dial ADC 0..4095 is scaled 0 to 49000ERPS. 

These simulated inputs will be very useful for later testing the sector rotation, which is based on the derived 
electrical rotor angle. 
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9 ROTOR ANGLE SELECTION 

 

There are now two methods to determine the electrical rotor angle.  The first is rotor angle estimation with 
quadrature updates.  The second is the new quadrature angle tracking for low speed and start/stop operation. 

Switching between these two methods requires a state machine and hysteresis.  Two parameters are used for 
controlling the selection between rotor tracking/estimation algorithms, ERPSHigh and ERPSLow.  Essentially the mode 
will change when the rotor speed increases or decreases past these thresholds, with hysteresis in-between.  A 
timeout period is also required for the hall sensor state changes, which is directly linked to the ERPSLow parameter to 
maintain consistent logic.   This will ensure that even a sudden rotor stop event will result in the hall sensor state 
change timeout triggering and the system will quickly transition to angle tracking. 

o ERPSHigh = 30 ERPS 
o ERPSLow = 15 ERPS 
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Rotor angle tracking is only required to be calculated while in its respective state.  Rotor estimation should always 
be running to facilitate its state machine and timed period between state changes, even though the rotor angle is 
ignored.  However, the rotor angle velocity and acceleration calculation should be zero while ERPS < ERPSlow to 
ensure erroneous calculations are not observed. 
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10 OCTAVE SOURCE CODE 

 

Updated with Hall Tracking Algorithm. 

 
clear all; clf 
 
% Constants 
%Hall_Zero_Reference = 2.122; 
%Hall_Hysteresis = 0.1; 
%Hall_Upper_Threshold = Hall_Zero_Reference + Hall_Hysteresis; 
%Hall_Lower_Threshold = Hall_Zero_Reference - Hall_Hysteresis; 
 
Hall_min_range = 0.5; 
Hall_over_range = 1.25; 
Hall_mid_init = 2.0; 
Hall_hysteresis = 0.2; 
Hall_convergence_period_fast = 0.001; 
Hall_convergence_period_slow = 0.04; 
Hall_convergence_rate = 0.005;     % Voltage step size 
 
 
TRUE = 1; 
FALSE = 0; 
 
% Load Sampled Test Data 
load Quad_Data.mat 
 
% Math Quadrant Test Data 
% This data is only for the simulated testing and not functionally relevant. 
Hall_Zero_Reference = Hall_mid_init; 
time = 0:0.5/5000:0.5; 
angle_offset = 11.25/360*2*pi(); 
x=1.1/2*sin(2*pi()*6*time./0.5 + angle_offset) + Hall_Zero_Reference; 
x2=1.1/2*sin(2*pi()*6*time./0.5 + angle_offset + 2*pi()*(11.5-7.5)*22.5/360) + 
Hall_Zero_Reference; 
a = 2.*(360/(2*pi())).*acos((2.*(x-Hall_Zero_Reference)./(1.1))); 
%a = linspace(0,(6 * 360),size(time,2));  
a2 = 360-mod(a,360); 
%plot(time,x2); hold on; plot(time, x); plot(time, a2./360+1.6); 
%axis([min(Time) max(time) 1.5 2.8]); grid 
Quad_Data_Generated_Fwd = [time ; x2 ; x ; 360-a2]'; 
Quad_Data_Generated_Rev = [time ; x ; x2 ; a2]'; 
clear time x2 x a a2; 
 
% Set Data to Use 
%Quad_Data = Quad_Data_Generated_Fwd;   qd_title = 'Quad Data Generated Fwd'; 
%Quad_Data = Quad_Data_Generated_Rev;   qd_title = 'Quad Data Generated Rev'; 
%Quad_Data = Quad_Data_Measured;   qd_title = 'Quad Data Measured'; 
%Quad_Data = Quad_Data_Slow;   qd_title = 'Quad Data Slow'; 
Quad_Data = Quad_Data_Fast;   qd_title = 'Quad Data Fast'; 
%Quad_Data = Quad_Data_Fast_Reverse;   qd_title = 'Quad Data Fast Reverse'; 
%Quad_Data = Quad_Data_Accel;   qd_title = 'Quad Data Acceleration'; 
%Quad_Data = Quad_Data_Decel;   qd_title = 'Quad Data Deceleration'; 
 
Quad_Data(:,2) = Quad_Data(:,2) +0.3; 
 
% Initialisation 
Time = Quad_Data(:,1); 
Analog_Hall_A = Quad_Data(:,2); 
Analog_Hall_B = Quad_Data(:,3); 
Digital_Hall_A = zeros(size(Time)); 
Digital_Hall_B = zeros(size(Time)); 
Hall_Upper_Threshold_A = zeros(size(Time)); 
Hall_Upper_Threshold_B = zeros(size(Time)); 
Hall_Lower_Threshold_A = zeros(size(Time)); 
Hall_Lower_Threshold_B = zeros(size(Time)); 
Hall_Max_A = zeros(size(Time)); 
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Hall_Mid_A = zeros(size(Time)); 
Hall_Min_A = zeros(size(Time)); 
Hall_Max_B = zeros(size(Time)); 
Hall_Mid_B = zeros(size(Time)); 
Hall_Min_B = zeros(size(Time)); 
Direction = zeros(size(Time)); 
Rotor_Angle = zeros(size(Time)); 
Rotor_Angle_State_Machine = zeros(size(Time)); 
Rotor_Correction_Time = Time(1); 
Rotor_Last_Correction_Angle = -1; 
Rotor_Angle_Velocity = 0; 
Rotor_Angle_Acceleration = 0; 
State_Change_Lockout_Timer = 0; 
 
% Initial Conditions 
Digital_Hall_A(1)=0.5;   % Usually 0 or 1.  Different value to force initial state change. 
Digital_Hall_B(1)=0.5; 
 
##Hall_Mid_A(1) = Hall_mid_init; 
##Hall_Mid_B(1) = Hall_mid_init; 
## 
##Hall_Max_A(1) = Hall_Mid_A(1) + Hall_hysteresis/2; 
##Hall_Min_A(1) = Hall_Mid_A(1) - Hall_hysteresis/2; 
##Hall_Max_B(1) = Hall_Mid_B(1) + Hall_hysteresis/2; 
##Hall_Min_B(1) = Hall_Mid_B(1) - Hall_hysteresis/2; 
 
Hall_Convergence_Timer_Max_A = 0; 
Hall_Convergence_Timer_Max_B = 0; 
Hall_Convergence_Timer_Min_A = 0; 
Hall_Convergence_Timer_Min_B = 0; 
 
 
%---------------------------------------------------------------- 
%---------------------------------------------------------------- 
% Run time loop 
 
for i=2:size(Time,1) 
   
  %---------------------------------------------------------------- 
  % Hall Tracking 
   
  % Timer Update 
  Time_Delta = Time(i) - Time(max(i-1,1)); 
  if Hall_Convergence_Timer_Max_A > 0 
    Hall_Convergence_Timer_Max_A = max(Hall_Convergence_Timer_Max_A - Time_Delta,0); 
  endif 
  if Hall_Convergence_Timer_Min_A > 0 
    Hall_Convergence_Timer_Min_A = max(Hall_Convergence_Timer_Min_A - Time_Delta,0); 
  endif 
  if Hall_Convergence_Timer_Max_B > 0 
    Hall_Convergence_Timer_Max_B = max(Hall_Convergence_Timer_Max_B - Time_Delta,0); 
  endif 
  if Hall_Convergence_Timer_Min_B > 0 
    Hall_Convergence_Timer_Min_B = max(Hall_Convergence_Timer_Min_B - Time_Delta,0); 
  endif 
 
  % Maintain variable with time indexed 
  Hall_Min_A(i) = Hall_Min_A(i-1); 
  Hall_Max_A(i) = Hall_Max_A(i-1); 
  Hall_Min_B(i) = Hall_Min_B(i-1); 
  Hall_Max_B(i) = Hall_Max_B(i-1); 
   
  % Maximum Tracking 
  Hall_Range_A = max(Hall_Max_A(i-1) - Hall_Min_A(i-1),0); 
  if Analog_Hall_A(i) >= Hall_Max_A(i-1) 
    % 4xIIR Track maximum value 
    Hall_Max_A(i) = (3*Hall_Max_A(i-1) + Analog_Hall_A(i))/4; 
    Hall_Convergence_Timer_Max_A = Hall_convergence_period_slow; 
  elseif  Hall_Range_A >= Hall_over_range && Hall_Convergence_Timer_Max_A == 0; 
    % Fast Convergence 
    Hall_Max_A(i) = Hall_Max_A(i-1) - Hall_convergence_rate; 
    Hall_Convergence_Timer_Max_A = Hall_convergence_period_fast; 
  elseif  Hall_Range_A >= Hall_min_range && Hall_Convergence_Timer_Max_A == 0; 
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    % Slow Convergence 
    Hall_Max_A(i) = Hall_Max_A(i-1) - Hall_convergence_rate; 
    Hall_Convergence_Timer_Max_A = Hall_convergence_period_slow; 
  endif 
   
  Hall_Range_B = max(Hall_Max_B(i-1) - Hall_Min_B(i-1),0); 
  if Analog_Hall_B(i) >= Hall_Max_B(i-1) 
    % 4xIIR Track maximum value 
    Hall_Max_B(i) = (3*Hall_Max_B(i-1) + Analog_Hall_B(i))/4; 
    Hall_Convergence_Timer_Max_B = Hall_convergence_period_slow; 
  elseif  Hall_Range_B >= Hall_over_range && Hall_Convergence_Timer_Max_B == 0; 
    % Fast Convergence 
    Hall_Max_B(i) = Hall_Max_B(i-1) - Hall_convergence_rate; 
    Hall_Convergence_Timer_Max_B = Hall_convergence_period_fast; 
  elseif  Hall_Range_B >= Hall_min_range && Hall_Convergence_Timer_Max_B == 0; 
    % Slow Convergence 
    Hall_Max_B(i) = Hall_Max_B(i-1) - Hall_convergence_rate; 
    Hall_Convergence_Timer_Max_B = Hall_convergence_period_slow; 
  endif 
   
  % Minimum Tracking 
  Hall_Range_A = max(Hall_Max_A(i) - Hall_Min_A(i-1),0); 
  if Analog_Hall_A(i) <= Hall_Min_A(i-1) 
    % 4xIIR Track minimum value 
    Hall_Min_A(i) = (3*Hall_Min_A(i-1) + Analog_Hall_A(i))/4; 
  elseif  Hall_Range_A >= Hall_over_range && Hall_Convergence_Timer_Min_A == 0; 
    % Fast Convergence 
    Hall_Min_A(i) = Hall_Min_A(i-1) + Hall_convergence_rate; 
    Hall_Convergence_Timer_Min_A = Hall_convergence_period_fast; 
  elseif  Hall_Range_A >= Hall_min_range && Hall_Convergence_Timer_Min_A == 0; 
    % Slow Convergence 
    Hall_Min_A(i) = Hall_Min_A(i-1) + Hall_convergence_rate; 
    Hall_Convergence_Timer_Min_A = Hall_convergence_period_slow; 
  endif 
   
  Hall_Range_B = max(Hall_Max_B(i) - Hall_Min_B(i-1),0); 
  if Analog_Hall_B(i) <= Hall_Min_B(i-1) 
    % 4xIIR Track minimum value 
    Hall_Min_B(i) = (3*Hall_Min_B(i-1) + Analog_Hall_B(i))/4; 
  elseif  Hall_Range_B >= Hall_over_range && Hall_Convergence_Timer_Min_B == 0; 
    % Fast Convergence 
    Hall_Min_B(i) = Hall_Min_B(i-1) + Hall_convergence_rate; 
    Hall_Convergence_Timer_Min_B = Hall_convergence_period_fast; 
  elseif  Hall_Range_B >= Hall_min_range && Hall_Convergence_Timer_Min_B == 0; 
    % Slow Convergence 
    Hall_Min_B(i) = Hall_Min_B(i-1) + Hall_convergence_rate; 
    Hall_Convergence_Timer_Min_B = Hall_convergence_period_slow; 
  endif 
 
  % Maintain Minimum Range 
  if Hall_Max_A(i) - Hall_Min_A(i) < Hall_min_range 
    % Maintain a minimum range between max and min 
    Hall_Max_A(i) = Hall_Min_A(i) + Hall_min_range;      
  endif 
  if Hall_Max_B(i) - Hall_Min_B(i) < Hall_min_range 
    % Maintain a minimum range between max and min 
    Hall_Max_B(i) = Hall_Min_B(i) + Hall_min_range;      
  endif 
   
  % Update Hall Thresholds 
  Hall_Mid_A = (Hall_Max_A(i) - Hall_Min_A(i))/2 + Hall_Min_A(i); 
  Hall_Upper_Threshold_A(i) = Hall_Mid_A + Hall_hysteresis/2; 
  Hall_Lower_Threshold_A(i) = Hall_Mid_A - Hall_hysteresis/2; 
   
  Hall_Mid_B = (Hall_Max_B(i) - Hall_Min_B(i))/2 + Hall_Min_B(i); 
  Hall_Upper_Threshold_B(i) = Hall_Mid_B + Hall_hysteresis/2; 
  Hall_Lower_Threshold_B(i) = Hall_Mid_B - Hall_hysteresis/2; 
 
 
 
  %---------------------------------------------------------------- 
  % Hall Sensor Logic Translation 
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  if State_Change_Lockout_Timer == 0 
    % Digital Hall A 
    if Analog_Hall_A(i) > Hall_Upper_Threshold_A(i) 
      Digital_Hall_A(i) = 1; 
    elseif Analog_Hall_A(i) < Hall_Lower_Threshold_A(i) 
      Digital_Hall_A(i) = 0; 
    else 
      Digital_Hall_A(i) = Digital_Hall_A(i-1);    % Hysteresis 
    endif 
 
    % Digital Hall B 
    if Analog_Hall_B(i) > Hall_Upper_Threshold_B(i) 
      Digital_Hall_B(i) = 1; 
    elseif Analog_Hall_B(i) < Hall_Lower_Threshold_B(i) 
      Digital_Hall_B(i) = 0; 
    else 
      Digital_Hall_B(i) = Digital_Hall_B(i-1);     
    endif 
  else 
    State_Change_Lockout_Timer = State_Change_Lockout_Timer -1; 
    Digital_Hall_A(i) = Digital_Hall_A(i-1); 
    Digital_Hall_B(i) = Digital_Hall_B(i-1);    
  endif 
   
  %---------------------------------------------------------------- 
  % Quadrature Transition State Machine 
  % Rotor Angle Correction 
   
  if(Digital_Hall_A(i-1)==0 && Digital_Hall_B(i-1)==0 && Digital_Hall_A(i)==0 && 
Digital_Hall_B(i)==1) 
    Rotor_Angle(i) = 190.07; 
    Direction(i) = -1; 
    State_Change = TRUE; 
  elseif (Digital_Hall_A(i-1)==0 && Digital_Hall_B(i-1)==0 && Digital_Hall_A(i)==1 && 
Digital_Hall_B(i)==0) 
    Rotor_Angle(i) = 280.07; 
    Direction(i) = 1; 
    State_Change = TRUE; 
  elseif (Digital_Hall_A(i-1)==0 && Digital_Hall_B(i-1)==1 && Digital_Hall_A(i)==0 && 
Digital_Hall_B(i)==0) 
    Rotor_Angle(i) = 190.07; 
    Direction(i) = 1; 
    State_Change = TRUE; 
  elseif (Digital_Hall_A(i-1)==0 && Digital_Hall_B(i-1)==1 && Digital_Hall_A(i)==1 && 
Digital_Hall_B(i)==1) 
    Rotor_Angle(i) = 100.07; 
    Direction(i) = -1; 
    State_Change = TRUE; 
  elseif (Digital_Hall_A(i-1)==1 && Digital_Hall_B(i-1)==0 && Digital_Hall_A(i)==0 && 
Digital_Hall_B(i)==0) 
    Rotor_Angle(i) = 280.07; 
    Direction(i) = -1; 
    State_Change = TRUE; 
  elseif (Digital_Hall_A(i-1)==1 && Digital_Hall_B(i-1)==0 && Digital_Hall_A(i)==1 && 
Digital_Hall_B(i)==1) 
    Rotor_Angle(i) = 10.07; 
    Direction(i) = 1; 
    State_Change = TRUE; 
  elseif (Digital_Hall_A(i-1)==1 && Digital_Hall_B(i-1)==1 && Digital_Hall_A(i)==0 && 
Digital_Hall_B(i)==1) 
    Rotor_Angle(i) = 100.07; 
    Direction(i) = 1; 
    State_Change = TRUE; 
  elseif (Digital_Hall_A(i-1)==1 && Digital_Hall_B(i-1)==1 && Digital_Hall_A(i)==1 && 
Digital_Hall_B(i)==0) 
    Rotor_Angle(i) = 10.07; 
    Direction(i) = -1; 
    State_Change = TRUE; 
  else 
    Rotor_Angle(i) = Rotor_Angle(i-1); 
    Direction(i) = Direction(i-1); 
    State_Change = FALSE; 
  endif 
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  % Noise Filter 
  % The intent is to lockout the state from changing rapidly due to noise. 
  % A better implementation is to check if the state change is a reversal in "Direction".  If so, 
the state change 
  % should be blocked from occurring for a minimum time period.  If the motor is acculately 
reversing direction, it would be  
  % a relatively slow change and a minor delay would be very insignificant. 
  if State_Change == TRUE; 
    % Re-start state change lockout timer 
    State_Change_Lockout_Timer = 3;         % Time period yet to be determined.  Added logic for 
functional implementation. 
  endif 
   
   
  % Track State Machine Angle 
  % This is merely for reference and not a functional requirement. 
  % The state changes are recorded to later plot for visual reference. 
  if State_Change == TRUE; 
    Rotor_Angle_State_Machine(i) = Rotor_Angle(i); 
  else 
    Rotor_Angle_State_Machine(i) = Rotor_Angle_State_Machine(i-1); 
  endif 
  
 
  %---------------------------------------------------------------- 
  % Rotor Update 
  % When a quadrature state change occurs, calculate the new angle update rate. 
  % When no quadrature update, estimate new angle based on estimated rotor velocity 
   
  if State_Change == TRUE 
    % Rotor Angle has already been updated by state machine. 
    if(Rotor_Last_Correction_Angle == -1) 
      % Update rate cannot be deteremined until second sample 
      Rotor_Angle_Velocity = 0; 
      Rotor_Angle_Acceleration = 0; 
    else 
      % Save history 
      Rotor_Angle_Velocity_1 = Rotor_Angle_Velocity;       % Used for acceleration calculation 
      % Calculate rotation delta since last state change 
      if (Direction(i)==1) 
        % Forward, Positive Rotation Angle 
        if Rotor_Last_Correction_Angle < Rotor_Angle(i) 
           dRotor_Angle = Rotor_Angle(i) - Rotor_Last_Correction_Angle;  
        else 
           dRotor_Angle = Rotor_Angle(i) - (Rotor_Last_Correction_Angle -360);  
        end 
      else 
        % Reverse, Negative Rotation Angle 
        if Rotor_Angle(i) < Rotor_Last_Correction_Angle 
           dRotor_Angle = Rotor_Angle(i) - Rotor_Last_Correction_Angle;  
        else 
           dRotor_Angle = (Rotor_Angle(i)-360) - Rotor_Last_Correction_Angle;  
        endif 
      endif 
       
      % Calculate new rate of angle change  
      dRotor_Angle_Period = Time(i) - Rotor_Last_Correction_Time;   % Period difference between 
state machine updates 
      Rotor_Angle_Velocity = dRotor_Angle / dRotor_Angle_Period;   % Angle/second 
      Rotor_Angle_Acceleration = (Rotor_Angle_Velocity - 
Rotor_Angle_Velocity_1)/dRotor_Angle_Period;  % Angle/second/second 
    end     
    % Update history for next calculation 
    Rotor_Last_Correction_Angle = Rotor_Angle(i); 
    Rotor_Last_Correction_Time = Time(i); 
     
  else  % State_Change == FALSE 
    % Estimate Rotor Angle Update 
    Period = Time(i) - Time(i-1); 
    Rotor_Angle(i) = Rotor_Angle(i) + Rotor_Angle_Velocity * Period + Rotor_Angle_Acceleration * 
Period^2 ; 
     



 

 

© Electric Vehicle System Technology  Page 40 of 41 

 

     
    % Roll 360 boundary 
    if(Rotor_Angle(i) > 360) 
      Rotor_Angle(i) = Rotor_Angle(i) - 360; 
    elseif (Rotor_Angle(i) < 0) 
      Rotor_Angle(i) = Rotor_Angle(i) + 360; 
    endif 
     
  endif 
   
  %---------------------------------------------------------------- 
   
end 
 
 
%---------------------------------------------------------------- 
%---------------------------------------------------------------- 
% Plot Results 
 
subplot(4,1,1); 
plot(Time, Analog_Hall_A,'r'); hold on 
plot(Time, Analog_Hall_B),'g'; 
plot(Time, Hall_Upper_Threshold_A,'-.r') 
plot(Time, Hall_Lower_Threshold_A,'-.r') 
%plot(Time, Hall_Upper_Threshold_B,'-.g') 
%plot(Time, Hall_Lower_Threshold_B,'..g') 
plot(Time, Hall_Max_A,'-.k'); 
plot(Time, Hall_Min_A,'-.k'); 
axis([min(Time) max(Time) 0 3.1]); grid 
title(['Analog Hall Sensor Feedback - ',qd_title]); 
legend('Analog Hall A', 'Analog Hall B', 'Upper Thres A','Lower Thres A', 'Max A','Min 
A','location','southeast'); 
xlabel('Time'); 
ylabel('Voltage (V)'); 
 
subplot(4,1,2); 
plot(Time, Digital_Hall_A); hold on 
plot(Time, Digital_Hall_B) 
axis([min(Time) max(Time) -0.1 1.1]); grid 
set(gca,'ytick', [0 1]); 
title('Quantised Hall Sensor Feedback'); 
legend('Digital Hall A', 'Digital Hall B','location','northwest'); 
xlabel('Time'); 
ylabel('Logic Level'); 
 
subplot(4,1,3); 
plot(Time, Rotor_Angle_State_Machine); hold on 
plot(Time ,Direction.*170+200);  
plot(Time, ones(size(Time)).*360,'-.r') 
plot(Time, ones(size(Time)).*0,'-.r') 
axis([min(Time) max(Time) -10 380]); grid 
set(gca,'ytick', [0:20:360]); 
title('Quadrature Transistion State Table Output'); 
legend('Angle', 'Direction','location','northwest'); 
xlabel('Time'); 
ylabel('Electrical Rotor Angle (degrees)'); 
 
subplot(4,1,4); 
plot(Time, ones(size(Time)).*360,'-.r'); hold on; 
plot(Time, ones(size(Time)).*0,'-.r') 
rotor_angle_analog = zeros(size(Time)); 
ra = (360/(2*pi())).*acos((2.*(Analog_Hall_A - Hall_Zero_Reference)./(1.1))); 
rb = (360/(2*pi())).*asin((2.*(Analog_Hall_B - Hall_Zero_Reference)./(1.1))); 
for i=2:size(Time,1) 
  if(Analog_Hall_A(i) > Hall_Zero_Reference && Analog_Hall_B(i) > Hall_Zero_Reference) 
    rotor_angle_analog(i) = rb(i); 
  elseif (Analog_Hall_A(i) > Hall_Zero_Reference && Analog_Hall_B(i) < Hall_Zero_Reference) 
    rotor_angle_analog(i) = rb(i)+360; 
  elseif (Analog_Hall_A(i) < Hall_Zero_Reference && Analog_Hall_B(i) > Hall_Zero_Reference) 
    rotor_angle_analog(i) = ra(i); 
  else 
    rotor_angle_analog(i) = 360-ra(i); 
  endif 
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end 
plot(Time,rotor_angle_analog,'m-.'); 
plot(Time, Rotor_Angle);  
legend('Angle Generated','Angle (Analog)','location','northwest'); 
axis([min(Time) max(Time) -10 370]); grid 
set(gca,'ytick', [0:20:360]); 
title('Rotor Angle'); 
xlabel('Time'); 
ylabel('Electrical Rotor Angle (degrees)'); 
 
 
%subplot(4,1,1); v=axis; axis([3.0 3.3 v(3) v(4)]) 
%subplot(4,1,2); v=axis; axis([3.0 3.3 v(3) v(4)]) 
%subplot(4,1,3); v=axis; axis([3.0 3.3 v(3) v(4)]) 
%subplot(4,1,4); v=axis; axis([3.0 3.3 v(3) v(4)]) 

 

 

<end of report> 

 


