

© Electric Vehicle System Technology Page 1 of 41

ELECTRIC MOTOR

ROTOR ANGLE

Date: 23rd Mar 2022

Revision: 1.2

Author: Tony Little

Product: Electric Motor

Company: Electric Vehicle System Technology

1 CONTENTS

2 Introduction .. 3

3 Hall Sensor Quadrature Updates .. 4

3.1 Rotor Electrical Angle .. 4

3.2 Rotor to Hall Sensor Relationship .. 5

3.3 Quadrature Transition State Table .. 6

3.4 Transition State Table Filtering .. 7

4 Hall Signal Tracking and Thresholds .. 8

4.1 Hall Signal Tracking Algorithm ... 9

4.1.1 OPERATING Constants ... 9

4.1.2 INITIALISATION: ... 10

4.1.3 Alogorithm Loop .. 10

4.2 Hall Signal Tracking Algorithm Simulation ... 13

5 Rotor Angle Update ... 15

6 Simulation ... 16

7 Comments ... 25

8 Rotor Angle Start/Stop .. 26

8.1 Trigonometric Angle Calculation ... 26

© Electric Vehicle System Technology Page 2 of 41

8.2 Simulation .. 29

8.3 Implemenation .. 31

8.4 Testing ... 32

8.4.1 Simulated Hall Sensor Data ... 32

8.4.2 Simulated Rotor Speed/Direction ... 32

9 Rotor Angle Selection .. 33

10 Octave Source Code ... 35

9-3-2022 V1.1 Added section on Rotor Angle Start/Stop. Added section on Rotor Angle Selection.

22-3-2022 V1.2 Added section 4, Hall Signal Tracking and Thresholds. Octave source code updated.

© Electric Vehicle System Technology Page 3 of 41

2 INTRODUCTION

Given the analog hall sensors currently have significant distortion, which varies with rotor speed, it is considered
problematic to attempt an analog quadrature rotor angle calculation. When the motor design can accommodate
minimal distortion, it would be advantageous to re-consider.

To achieve a function rotor angle for commutation, the approach will be to digitize the analog sensor feedback near
the zero-reference point with hysteresis, to provide rotor angle position updates. These form an angle update
correction. The rate of updates will then be used to determine the rotation speed to enable faster periodic
calculated rotor position. For commutation control, the rotor angle needs to be updated at a faster rate and with
significantly more electrical rotation points. Otherwise, the commutation will be severely limited and sector
rotation to use all phases will not be possible.

An extension to this is to calculate the acceleration to improve the dynamic performance response.

© Electric Vehicle System Technology Page 4 of 41

3 HALL SENSOR QUADRATURE UPDATES

The first stage is to quantize the analog hall sensor data to produce quadrature state changes. These state changes
provide the feedback to update the rotor angle with a measured known position at the time of the change. The rate
of these state changes will later be used calculate updates at a higher rate to support sector rotation.

3.1 ROTOR ELECTRICAL ANGLE

The previously defined 0 degree electrical angle is shown in the diagram below. The hall sensors are positioned 90
electrical degrees apart, to the midline for bars 7 (Hall Sensor A) and 11 (Hall Sensor B). The bars are 360/16 = 22.5
degrees apart. Given the hall sensors are positioned midline to the bars, they have an offset of ½ a bar, 11.25
degrees. The peak field intensity at 0 degrees occurs between bars 7 to 8 and 0 to 15 on adjacent segments.
Therefore, Hall Sensor A will have an 11.25 degree offset to the peak field with the rotor at 0 electrical degrees.

© Electric Vehicle System Technology Page 5 of 41

3.2 ROTOR TO HALL SENSOR RELATIONSHIP

The mathematical relationship between electrical angle and magnetic field sensed by the hall sensors

_ , _ is given below.

_ =
2

cos (
2

360
− +

_ =
2

sin (
2

360
− +

Transposed to solve for .

=
360
2

2(_ −)
−

=
360
2

sin
2(_ −)

−

© Electric Vehicle System Technology Page 6 of 41

The graph below shows the analog hall sensors _ , _ with their digitized logic transitions with hysteresis
based on the parameters previously defined.

3.3 QUADRATURE TRANSITION STATE TABLE

The transitions are defined in the follow logic table, along with resulting angle updates.

Double state changes are considered invalid.

0

0.5

1

1.5

2

2.5

0 60 120 180 240 300 360 420

M
ag

ne
tic

 F
ie

ld
 S

tr
en

gt
h

Electrical Rotor Angle (degrees)

Digital Conversion of Hall Sensors with Hysteresis

A B A Digital B Digital

Quadrature Transistion State Table
A(t-1) B(t-1) A B Angle Direction

0 0 0 0 - -
0 0 0 1 190.07 Reverse
0 0 1 0 280.07 Forward
0 0 1 1 - -
0 1 0 0 190.07 Forward
0 1 0 1 - -
0 1 1 0 - -
0 1 1 1 100.07 Reverse
1 0 0 0 280.07 Reverse
1 0 0 1 - -
1 0 1 0 - -
1 0 1 1 10.07 Forward
1 1 0 0 - -
1 1 0 1 100.07 Forward
1 1 1 0 10.07 Reverse
1 1 1 1 - -

© Electric Vehicle System Technology Page 7 of 41

3.4 TRANSITION STATE TABLE FILTERING

A good filter to consider is one that does not allow the state to reverse direction without a minimum period being
exceeded. This increases the robustness to noise. This is particularly important for calculating the rotor velocity
and acceleration, as errant state changes will have a significant impact on their calculation. An alternative simple
filter is to lockout the quadrature quantization for a minimum period after a state change. Given the maximum
electrical RPM is 49,000, the maximum quadrature update rate is 60/49k/4 = 306us. A practical generic lockout
period of 100us would be realistic.

© Electric Vehicle System Technology Page 8 of 41

4 HALL SIGNAL TRACKING AND THRESHOLDS

The following table represents preliminary example for operating parameters and voltage levels previously
established from the analysis of the hall sensor performance. In addition, an arbitrary +/-0.2V hysteresis has been
specified. Given the current magnetic field distortion, a low hysteresis is desirable. Too low and analog noise may
cause a false transition. The level chosen is considered a balance, but also with enough significance to validate the
math and identify correct operation.

The quadrature rotor signals amplitude and DC offset will vary between builds. An offset of 0.1V on one or both of
the quadrature signals is sufficient to skew subsequent rotor angle estimations. Therefore, independent tracking of
each hall sensor is required to determine the amplitude and subsequent hysteresis thresholds dynamically.

Parameter Unit Value
Phase Offset Deg 11.25
Hysteresis +/- V 0.200
Vz Zero Ref V 2.122
Low V 1.922
High V 2.322
Vp-p V 1.100

© Electric Vehicle System Technology Page 9 of 41

4.1 HALL SIGNAL TRACKING ALGORITHM

To track the AC signal from the hall sensor and subsequent derive the logic switching around the zero reference, a
tracking algorithm is required. The aim of the algorithm is to track the minimum and maximum of the signal. This
data can then be used to determine the zero reference for each hall signal, which the hysteresis threshold levels can
then be dynamically determined.

Both minimum and maximum filter need at least a minimum amount of filtering to ensure any outliers do not
adversely impact the desired envelop. A basic 4x IIR filter is used.

These filters must also have an opposing convergence mechanism, otherwise the minimum and maximum values
could not recover from the extents of perturbations or initial conditions. This convergence additionally requires fast
initial tracking. However, during operation, much slower convergence is required for stable threshold transitions
and smooth rotation output data. Therefore, a dual rate convergence mechanism is used.

The follow algorithm equations are for Hall Sensor A. Implementation requires a second set of equations for
tracking Hall Sensor B.

4.1.1 OPERATING CONSTANTS

_ = 0.5 Minimum range the minimum and maximum can converge too.

_ = 1.25 When hall tracking range (max – min).

_ = 2.0 Mid-voltage of hall sensor oscillation.

= 0.2 Hysteresis between analog hall quantization.

_ _ = 1.0 Maximum period between slow convergence updates.

_ _ = 40.0 Maximum period between slow convergence updates.

_ = 0.005 Convergence step size

© Electric Vehicle System Technology Page 10 of 41

4.1.2 INITIALISATION:

To occur after the first A/D readings are obtained.

_ = _

_ = _ +

_ = _ −
2

_ _ _ = 0

_ _ _ = 0

4.1.3 ALOGORITHM LOOP

Convergence Timer Update

Reduce convergence timers (if not zero) with last execution loop period.

_ _ _ = max (0, _ _ _ −)

_ _ _ = max (0, _ _ _ −)

Maximum Signal Tracking

4xIIR Peak Value Filter with dual convergence rate.

_ = max (_ − _ , 0)

If (≥ _)

_
(∗ _)

 4xIIR Track maximum value

 elseif _ ≥ _ && _ _ _ == 0

_ _ − 0.01 Fast Convergence

_ _ _ = _ _

elseif _ ≥ _ && _ _ _ == 0

_ _ − 0.01 Slow Convergence

_ _ _ = _ _

 endif

© Electric Vehicle System Technology Page 11 of 41

Minimum Signal Tracking

4xIIR Trough Value Filter with dual convergence rate.

_ = max (_ − _ , 0)

If ≤ _

_
(∗ _)

 4xIIR Track maximum value

 elseif _ ≥ _ && _ _ _ == 0

_ _ + 0.01 Fast Convergence

_ _ _ = _ _

elseif _ ≥ _ && _ _ == 0

_ _ + 0.01 Slow Convergence

_ _ _ = _ _

 endif

Maintain minimum range.

This ensures a minimum distance for realistic and quicker convergence.

_ = max (_ − _ , 0)

 If _ < _

 _ = _ + _

 endif

© Electric Vehicle System Technology Page 12 of 41

Hall Signal Thresholds

Calculated mid-point of the signal.

_ _ = _ _ + _

Calculate current thresholds.

_ _ = _ _ +

_ _ = _ _ −

Note: The _ _ output can be used by the start/stop rotor angle calculation.

© Electric Vehicle System Technology Page 13 of 41

4.2 HALL SIGNAL TRACKING ALGORITHM SIMULATION

The algorithm was implemented in octave. Below shows the quadrature signals with one having an additional 0.3V
offset. Convergence rates increased to 1ms/10ms/10mV for demonstration only. In addition, initial conditions
were not set to force/test large range adaption. Annotation and dashed plots with respect to Hall A only.

© Electric Vehicle System Technology Page 14 of 41

Example using captured date, fast acceleration.

© Electric Vehicle System Technology Page 15 of 41

5 ROTOR ANGLE UPDATE

4 rotor angle updates per electrical rotation from the quadrature sensors is not sufficient for commutation. Sector
rotation logic has 16 states and the resolution should at least be 10 times this requirement. To accommodate the
faster rotor angle updates, the period between the quadrature updates can be measured and the rate of change
can be used to periodic update a calculated position. More specifically, the rotor velocity and acceleration can be
calculated to applying calculated rotor updates.

Hence, the quadrature state updates are responsible for synchronizing to the hall sensor feedback at 4 points in the
electrical rotation. At other times the rotor angle is updated from calculation, based on the rate of quadrature
updates.

The requirement is to measure the period between successive quadrature state updates, as well as the delta for
rotation. Then calculate the velocity and acceleration and apply at a higher update rate.

Period (seconds)
dRotor_Angle_Period = Current Time - Rotor_Last_Correction_Time

Velocity (angle/second)
Rotor_Angle_Velocity = dRotor_Angle / dRotor_Angle_Period

Acceleration (angle/second/second)

Rotor_Angle_Acceleration = (Rotor_Angle_Velocity - Rotor_Angle_Velocity(t-1)) / dRotor_Angle_Period

The rate of updates can be applied at the PWM period. These updates can then drive the sector rotation for bar
current control.

Rotor Update

Rotor_Angle = Rotor_Angle + Rotor_Angle_Velocity * PWM_Period + Rotor_Angle_Acceleration * PWM_Period^2

© Electric Vehicle System Technology Page 16 of 41

6 SIMULATION

Using simulated hall sensor data, the logic was implemented in Octave. The first plot shows the quadrature analog
sensor feedback, with red dashed lines denoting the hysteresis levels. The second plot shows the quantized hall
sensor data, based on hysteresis used. The third plot shows the output of the quadrature transition state table,
where the 4 angle updates can be see in blue and the direction in orange (high = forward). The last plot shows the
resulting rotor angle in blue, with the rate angle calculation applied. The purple line is a reference based on the
original analog hall sensor data, generated by a quadrant determination and reverse calculation. It is noticeable the
rotor angle in blue begins tracking after the period of state updates can measured.

© Electric Vehicle System Technology Page 17 of 41

The example below is simulated data, with reverse rotation.

© Electric Vehicle System Technology Page 18 of 41

Sample data from the motor rotating slowly. Hall sensor data has low distortion. The blue rotor angle line is quite
good. Notice the purple line calculated from the analog data is less ideal, due to the distortion.

© Electric Vehicle System Technology Page 19 of 41

Sampled data from the motor rotating at a fast rate. The rotor angle calculation is looking quite consistent, despite
the sensor distortion. The purple calculated angle from the analog data has a lot more noise.

© Electric Vehicle System Technology Page 20 of 41

Sampled data from the motor rotating at a relative fast rate, in the reverse direction.

© Electric Vehicle System Technology Page 21 of 41

Sampled data from the stationary motor accelerating in rotation, ~5 seconds.

© Electric Vehicle System Technology Page 22 of 41

The following plot show a close up of the first ~2.5 seconds. Not noticeable clipping or jagged corrections.

© Electric Vehicle System Technology Page 23 of 41

Sampled data from a rotating motor decelerating to a stationary position.

© Electric Vehicle System Technology Page 24 of 41

Close up of the deceleration. Minor angle reversals observed. A refinement to the angle update would be to only
apply updates in the continuous direction of established rotation. This would result in an increasing or decreasing
stepped result, rather than a sharp temporary reversal.

The quadrature updates that generate the angular velocity and acceleration for the deceleration test is shown
below. The acceleration parameter (orange) has very little contribution to the rotor angle tracking for this example.
It will likely only contribute with significance during higher levels of dynamic performance.

© Electric Vehicle System Technology Page 25 of 41

7 COMMENTS

The approach taken to quantized the hall sensor data and generate updates has generated robust results from
sampled data. It is expected to accommodate the magnetic field distortion and accommodate higher levels of
noise.

This approach will also suit using latched digital hall sensors. The advantage is these do not require ADC inputs that
require sampling. Instead, they can be used with digital inputs at higher rates and with less processor overhead.
Preferably associated with a quadrature peripheral.

The current implementation uses measured analog hall sensor data as constants. However the machine will have
variability. The Vz zero reference and Vpp peak to peak values will vary due to electrical tolerances, magnet
strength and mechanical tolerance and property differences. A robust approach would be to have an adaptive Vz
and Vpp for each hall sensor.

Sample data from the motor was used to validate the method. This data was collected for the motor rotating
slowly, fast, in different directions and with both acceleration and deceleration. The fastest observed operation had
~23 electrical rotations in 1.0 seconds. 23/(7_segments) = 197rpm. Therefore, the term “fast” is based on the
limits of a cordless drill system. Testing was not possible through the target 7000rpm range.

The Octave source code has been written with the intent for being a pseudo code reference. The code is in a time
indexed sequential format, not matrixed operations. Conditional if-then logic is used and processing separated into
functional blocks.

The key blocks to implement the system are:

1. Hall Sensor Logic Translation
2. Quadrature Transition State Machine
3. Rotor Angle Update

© Electric Vehicle System Technology Page 26 of 41

8 ROTOR ANGLE START/STOP

The following requirement is to support rotor angle detection/tracking during start/stop conditions, where the slow
or non-existent rotor movement is not sufficiently triggering hall effect transition points for the rotor angle
estimation to function accurately. This includes establishing an initial system power on start-up angle. In addition,
during motor stopping events, the estimator could persist and run-away with old non-zero velocity and acceleration
data.

The quadrature analog hall sensors provide feedback that could be used to determine rotors electrical position,
however previously this analog data is quantized due to the significant signal distortion. An important distinction is
that at zero or near zero rotation speed, the distortion is relatively low. It is anticipated that using the analog data
will provide the most accurate tracking of rotor position at this very low or zero speed. This follows the original
intent of using analog hall sensors, where absolute rotor position is known for start/stop transitions.

8.1 TRIGONOMETRIC ANGLE CALCULATION

Trigonometry and sector classification can be used to derive the rotor angle from the quadrature hall feedback. This
will be referred to as “Quadrature rotor angle tracking”. Angle tracking the abbreviated phase. The following Ra
and Rb calculations are used conditionally to derive the electrical angle.

=
360
2

cos (
2

1.1
(− _)

=
360
2

sin (
2

1.1
(− _)

=

⎩
⎪
⎨

⎪
⎧ ℎ ≥ ≥

+ 360 ℎ ≥ <

 ℎ < ≥
360 − ℎ (< <)

© Electric Vehicle System Technology Page 27 of 41

The TMS320F280049 incorporates a Trigonometric Math Unit (TMU), which provides an extended instruction set for
the following functions.

The equations require asin, acos and the square root function. Unfortunately, asin and acos are not supported by
the TMU, however it does support atan.

There is a mathematical equivalent for calculating asin and acos as a function of atan and square root (see below,
Wiki). However, the acos equivalent is suited for geometric positive inputs, not negative inputs. This can be
corrected for the application by negating and adding a positive offset for the specific negative input quadrant.

An additional intermediate variable is added to the calculations to accommodate the asin & acos functions. Also
included is appropriate logic to boundary check the values to avoid erroneous and out of range calculations.

= lim

2
1.1

(− _

= lim

2
1.1

(− _

© Electric Vehicle System Technology Page 28 of 41

Limits applied to prevent division by zero, as well as very high numbers.

=
10000 ℎ = 0

1 −

 ℎ > 0

=

⎩
⎪
⎨

⎪
⎧−10000 ℎ = −1

10000 ℎ = 1

1 −

 ℎ > 0

Calculation using atan function and adjustment for acos negative quadrant results…

= 180 −
360
2

()

=
360
2

()

The same conditional output equations apply for determining which quadrant is active to derive the angle.

=

⎩
⎪
⎨

⎪
⎧ ℎ ≥ ≥

+ 360 ℎ ≥ <

 ℎ < ≥
360 − ℎ (< <)

© Electric Vehicle System Technology Page 29 of 41

8.2 SIMULATION

The equations and associated logic were implemented in Excel. Also implemented where simulated hall sensor
outputs. The motor direction and RPM can be is user controlled by the green fields.

Variable Speed. Controlled by RPM
Recommend to configure a switch for the "Direction" and a dial for "Speed", where Dial ADC 0..4095 is scaled 0 to 7000rpm.

Hall Sensor
Nominal V 2.122
Hysteresis V 0.1
Upper Threshold V 2.222
Lower Threshold V 2.022
Time period us 50 Update period

Direction -1 Direction = 1 or -1
Speed RPM 25.71429 Electrical rotation speed = 0 to 7000. 60/7 = 1ERPS
Speed ERPS 3.00 Hz

Time (seconds) Hall_A Hall_B
0.000000 2.122 1.572
0.000050 2.123 1.572
0.000100 2.123 1.572
0.000150 2.124 1.572
0.000200 2.124 1.572
0.000250 2.125 1.572
0.000300 2.125 1.572
0.000350 2.126 1.572
0.000400 2.126 1.572
0.000450 2.127 1.572
0.000500 2.127 1.572

Answer Answer Answer
Time (seconds) Hall_A Hall_B RA RB If-then 1 if-then 2 if-then 3 else Angle Xa Va acos(Va) Ra Xb Vb asin(Vb) Rb If-then 1 if-then 2 if-then 3 else Angle Angle

0.000000 2.122 1.572 90 -90 0 270 0 0 270 0 10000 1.570696327 269.9942704 -1 -10000 -1.57069633 -89.9942704 0 270.0057 0 0 270.0057 270.0057
0.000050 2.123 1.572 89.946 -89.946 0 270.054 0 0 270.054 0.000942478 1061.03264 1.569853849 269.946 -0.99999956 -1061.03264 -1.56985385 -89.946 0 270.054 0 0 270.054 270.054
0.000100 2.123 1.572 89.892 -89.892 0 270.108 0 0 270.108 0.001884954 530.5158487 1.568911371 269.892 -0.99999822 -530.515849 -1.56891137 -89.892 0 270.108 0 0 270.108 270.108
0.000150 2.124 1.572 89.838 -89.838 0 270.162 0 0 270.162 0.00282743 353.6767088 1.567968893 269.838 -0.999996 -353.676709 -1.56796889 -89.838 0 270.162 0 0 270.162 270.162
0.000200 2.124 1.572 89.784 -89.784 0 270.216 0 0 270.216 0.003769902 265.2569818 1.567026416 269.784 -0.99999289 -265.256982 -1.56702642 -89.784 0 270.216 0 0 270.216 270.216
0.000250 2.125 1.572 89.73 -89.73 0 270.27 0 0 270.27 0.004712372 212.20502 1.566083938 269.73 -0.9999889 -212.20502 -1.56608394 -89.73 0 270.27 0 0 270.27 270.27
0.000300 2.125 1.572 89.676 -89.676 0 270.324 0 0 270.324 0.005654837 176.8369407 1.56514146 269.676 -0.99998401 -176.836941 -1.56514146 -89.676 0 270.324 0 0 270.324 270.324
0.000350 2.126 1.572 89.622 -89.622 0 270.378 0 0 270.378 0.006597297 151.5739372 1.564198982 269.622 -0.99997824 -151.573937 -1.56419898 -89.622 0 270.378 0 0 270.378 270.378
0.000400 2.126 1.572 89.568 -89.568 0 270.432 0 0 270.432 0.007539751 132.626606 1.563256504 269.568 -0.99997158 -132.626606 -1.5632565 -89.568 0 270.432 0 0 270.432 270.432
0.000450 2.127 1.572 89.514 -89.514 0 270.486 0 0 270.486 0.008482198 117.889723 1.562314027 269.514 -0.99996403 -117.889723 -1.56231403 -89.514 0 270.486 0 0 270.486 270.486
0.000500 2.127 1.572 89.46 -89.46 0 270.54 0 0 270.54 0.009424638 106.1001538 1.561371549 269.46 -0.99995559 -106.100154 -1.56137155 -89.46 0 270.54 0 0 270.54 270.54
0.000550 2.128 1.572 89.406 -89.406 0 270.594 0 0 270.594 0.01036707 96.45408549 1.560429071 269.406 -0.99994626 -96.4540855 -1.56042907 -89.406 0 270.594 0 0 270.594 270.594
0.000600 2.128 1.572 89.352 -89.352 0 270.648 0 0 270.648 0.011309492 88.41564289 1.559486593 269.352 -0.99993605 -88.4156429 -1.55948659 -89.352 0 270.648 0 0 270.648 270.648
0.000650 2.129 1.572 89.298 -89.298 0 270.702 0 0 270.702 0.012251905 81.61383542 1.558544115 269.298 -0.99992494 -81.6138354 -1.55854412 -89.298 0 270.702 0 0 270.702 270.702

Angle Test
Calculation

with asin, acos RA calculated with TMU functions RB calculated with TMU functions Case LogicCase Logic

© Electric Vehicle System Technology Page 30 of 41

The black plot shows the angle operating cleanly between 0 to 360 degrees (secondary scale on right). The math
was tested for both forward and reverse rotor directions.

0

50

100

150

200

250

300

350

0.000

0.500

1.000

1.500

2.000

2.500

3.000

-0.150000 0.050000 0.250000 0.450000 0.650000 0.850000 1.050000

El
ec

tr
ic

al
 A

ng
le

 (d
eg

re
es

)

H
al

l S
en

so
r V

ol
ta

ge

Time (seconds)

Electrical Angle Derived from Analog Hall Sensor Data

Hall_A

Hall_B

Angle

0

50

100

150

200

250

300

350

0.000

0.500

1.000

1.500

2.000

2.500

3.000

-0.150000 0.050000 0.250000 0.450000 0.650000 0.850000 1.050000

El
ec

tr
ic

al
 A

ng
le

 (d
eg

re
es

)

Ha
ll

Se
ns

or
 V

ol
ta

ge

Time (seconds)

Electrical Angle Derived from Analog Hall Sensor Data

Hall_A

Hall_B

Angle

© Electric Vehicle System Technology Page 31 of 41

8.3 IMPLEMENATION

At any one time, only Ra or Rb needs to be calculated. Not both. The quadrant classification should be done first to
determine whether Ra or Rb needs to be calculated.

=

⎩
⎪
⎨

⎪
⎧ ℎ ≥ ≥

+ 360 ℎ ≥ <

 ℎ < ≥
360 − ℎ (< <)

Reference was found on the TI E2E forums regarding the calculation of asin and acos using the same technique and
TMU. The code below was in reference to: “These should compute in ~60 cycles with --fp_mode = relaxed and
optimization off.”

volatile float x = 0.6513246f;
volatile float v, a, b;
void main(void)
{
// a = asinf(x)
v = x / sqrtf(1 - (x*x));
a = atanf(v);

// b = acosf(x)
v = sqrtf(1 - (x*x)) / x;
b = atanf(v);

Also note, the TMU direct supports instructions for multiplication by 2 and division by 2 .

o MPY2PIF32
o DIV2PIF32

© Electric Vehicle System Technology Page 32 of 41

8.4 TESTING

8.4.1 SIMULATED HALL SENSOR DATA

The following equations can be used to generated simulated hall sensor feedback of the motor rotating.

_ () =
1.1
2

sin(2 ∗) + _

() =
1.1
2

sin 2 ∗ +
2
4

∗ +

Where:

 = -1, 1 (reverse, forwards)

 = electrical rotations per second.

These equations are also implemented in the Excel file.

8.4.2 SIMULATED ROTOR SPEED/DIRECTION

It is recommended to use the user controls on the diagnostic board to control the simulated hall sensor data.
Configure a switch for the "Direction" and a dial for "Speed", where Dial ADC 0..4095 is scaled 0 to 49000ERPS.

These simulated inputs will be very useful for later testing the sector rotation, which is based on the derived
electrical rotor angle.

© Electric Vehicle System Technology Page 33 of 41

9 ROTOR ANGLE SELECTION

There are now two methods to determine the electrical rotor angle. The first is rotor angle estimation with
quadrature updates. The second is the new quadrature angle tracking for low speed and start/stop operation.

Switching between these two methods requires a state machine and hysteresis. Two parameters are used for
controlling the selection between rotor tracking/estimation algorithms, ERPSHigh and ERPSLow. Essentially the mode
will change when the rotor speed increases or decreases past these thresholds, with hysteresis in-between. A
timeout period is also required for the hall sensor state changes, which is directly linked to the ERPSLow parameter to
maintain consistent logic. This will ensure that even a sudden rotor stop event will result in the hall sensor state
change timeout triggering and the system will quickly transition to angle tracking.

o ERPSHigh = 30 ERPS
o ERPSLow = 15 ERPS

Motor
Initialisation

Rotor
Angle Tracking

Mode

Rotor Estimation
Quadrature Hall

Rotor Estimation
Commutation

Feedback (TBA)

ERPS < ERPSLow
or

Hall sensor state
change timeout >

1/(4*ERPSLow)

ERPS > ERPSHigh

© Electric Vehicle System Technology Page 34 of 41

Rotor angle tracking is only required to be calculated while in its respective state. Rotor estimation should always
be running to facilitate its state machine and timed period between state changes, even though the rotor angle is
ignored. However, the rotor angle velocity and acceleration calculation should be zero while ERPS < ERPSlow to
ensure erroneous calculations are not observed.

© Electric Vehicle System Technology Page 35 of 41

10 OCTAVE SOURCE CODE

Updated with Hall Tracking Algorithm.

clear all; clf

% Constants
%Hall_Zero_Reference = 2.122;
%Hall_Hysteresis = 0.1;
%Hall_Upper_Threshold = Hall_Zero_Reference + Hall_Hysteresis;
%Hall_Lower_Threshold = Hall_Zero_Reference - Hall_Hysteresis;

Hall_min_range = 0.5;
Hall_over_range = 1.25;
Hall_mid_init = 2.0;
Hall_hysteresis = 0.2;
Hall_convergence_period_fast = 0.001;
Hall_convergence_period_slow = 0.04;
Hall_convergence_rate = 0.005; % Voltage step size

TRUE = 1;
FALSE = 0;

% Load Sampled Test Data
load Quad_Data.mat

% Math Quadrant Test Data
% This data is only for the simulated testing and not functionally relevant.
Hall_Zero_Reference = Hall_mid_init;
time = 0:0.5/5000:0.5;
angle_offset = 11.25/360*2*pi();
x=1.1/2*sin(2*pi()*6*time./0.5 + angle_offset) + Hall_Zero_Reference;
x2=1.1/2*sin(2*pi()*6*time./0.5 + angle_offset + 2*pi()*(11.5-7.5)*22.5/360) +
Hall_Zero_Reference;
a = 2.*(360/(2*pi())).*acos((2.*(x-Hall_Zero_Reference)./(1.1)));
%a = linspace(0,(6 * 360),size(time,2));
a2 = 360-mod(a,360);
%plot(time,x2); hold on; plot(time, x); plot(time, a2./360+1.6);
%axis([min(Time) max(time) 1.5 2.8]); grid
Quad_Data_Generated_Fwd = [time ; x2 ; x ; 360-a2]';
Quad_Data_Generated_Rev = [time ; x ; x2 ; a2]';
clear time x2 x a a2;

% Set Data to Use
%Quad_Data = Quad_Data_Generated_Fwd; qd_title = 'Quad Data Generated Fwd';
%Quad_Data = Quad_Data_Generated_Rev; qd_title = 'Quad Data Generated Rev';
%Quad_Data = Quad_Data_Measured; qd_title = 'Quad Data Measured';
%Quad_Data = Quad_Data_Slow; qd_title = 'Quad Data Slow';
Quad_Data = Quad_Data_Fast; qd_title = 'Quad Data Fast';
%Quad_Data = Quad_Data_Fast_Reverse; qd_title = 'Quad Data Fast Reverse';
%Quad_Data = Quad_Data_Accel; qd_title = 'Quad Data Acceleration';
%Quad_Data = Quad_Data_Decel; qd_title = 'Quad Data Deceleration';

Quad_Data(:,2) = Quad_Data(:,2) +0.3;

% Initialisation
Time = Quad_Data(:,1);
Analog_Hall_A = Quad_Data(:,2);
Analog_Hall_B = Quad_Data(:,3);
Digital_Hall_A = zeros(size(Time));
Digital_Hall_B = zeros(size(Time));
Hall_Upper_Threshold_A = zeros(size(Time));
Hall_Upper_Threshold_B = zeros(size(Time));
Hall_Lower_Threshold_A = zeros(size(Time));
Hall_Lower_Threshold_B = zeros(size(Time));
Hall_Max_A = zeros(size(Time));

© Electric Vehicle System Technology Page 36 of 41

Hall_Mid_A = zeros(size(Time));
Hall_Min_A = zeros(size(Time));
Hall_Max_B = zeros(size(Time));
Hall_Mid_B = zeros(size(Time));
Hall_Min_B = zeros(size(Time));
Direction = zeros(size(Time));
Rotor_Angle = zeros(size(Time));
Rotor_Angle_State_Machine = zeros(size(Time));
Rotor_Correction_Time = Time(1);
Rotor_Last_Correction_Angle = -1;
Rotor_Angle_Velocity = 0;
Rotor_Angle_Acceleration = 0;
State_Change_Lockout_Timer = 0;

% Initial Conditions
Digital_Hall_A(1)=0.5; % Usually 0 or 1. Different value to force initial state change.
Digital_Hall_B(1)=0.5;

##Hall_Mid_A(1) = Hall_mid_init;
##Hall_Mid_B(1) = Hall_mid_init;

##Hall_Max_A(1) = Hall_Mid_A(1) + Hall_hysteresis/2;
##Hall_Min_A(1) = Hall_Mid_A(1) - Hall_hysteresis/2;
##Hall_Max_B(1) = Hall_Mid_B(1) + Hall_hysteresis/2;
##Hall_Min_B(1) = Hall_Mid_B(1) - Hall_hysteresis/2;

Hall_Convergence_Timer_Max_A = 0;
Hall_Convergence_Timer_Max_B = 0;
Hall_Convergence_Timer_Min_A = 0;
Hall_Convergence_Timer_Min_B = 0;

%--
%--
% Run time loop

for i=2:size(Time,1)

 %--
 % Hall Tracking

 % Timer Update
 Time_Delta = Time(i) - Time(max(i-1,1));
 if Hall_Convergence_Timer_Max_A > 0
 Hall_Convergence_Timer_Max_A = max(Hall_Convergence_Timer_Max_A - Time_Delta,0);
 endif
 if Hall_Convergence_Timer_Min_A > 0
 Hall_Convergence_Timer_Min_A = max(Hall_Convergence_Timer_Min_A - Time_Delta,0);
 endif
 if Hall_Convergence_Timer_Max_B > 0
 Hall_Convergence_Timer_Max_B = max(Hall_Convergence_Timer_Max_B - Time_Delta,0);
 endif
 if Hall_Convergence_Timer_Min_B > 0
 Hall_Convergence_Timer_Min_B = max(Hall_Convergence_Timer_Min_B - Time_Delta,0);
 endif

 % Maintain variable with time indexed
 Hall_Min_A(i) = Hall_Min_A(i-1);
 Hall_Max_A(i) = Hall_Max_A(i-1);
 Hall_Min_B(i) = Hall_Min_B(i-1);
 Hall_Max_B(i) = Hall_Max_B(i-1);

 % Maximum Tracking
 Hall_Range_A = max(Hall_Max_A(i-1) - Hall_Min_A(i-1),0);
 if Analog_Hall_A(i) >= Hall_Max_A(i-1)
 % 4xIIR Track maximum value
 Hall_Max_A(i) = (3*Hall_Max_A(i-1) + Analog_Hall_A(i))/4;
 Hall_Convergence_Timer_Max_A = Hall_convergence_period_slow;
 elseif Hall_Range_A >= Hall_over_range && Hall_Convergence_Timer_Max_A == 0;
 % Fast Convergence
 Hall_Max_A(i) = Hall_Max_A(i-1) - Hall_convergence_rate;
 Hall_Convergence_Timer_Max_A = Hall_convergence_period_fast;
 elseif Hall_Range_A >= Hall_min_range && Hall_Convergence_Timer_Max_A == 0;

© Electric Vehicle System Technology Page 37 of 41

 % Slow Convergence
 Hall_Max_A(i) = Hall_Max_A(i-1) - Hall_convergence_rate;
 Hall_Convergence_Timer_Max_A = Hall_convergence_period_slow;
 endif

 Hall_Range_B = max(Hall_Max_B(i-1) - Hall_Min_B(i-1),0);
 if Analog_Hall_B(i) >= Hall_Max_B(i-1)
 % 4xIIR Track maximum value
 Hall_Max_B(i) = (3*Hall_Max_B(i-1) + Analog_Hall_B(i))/4;
 Hall_Convergence_Timer_Max_B = Hall_convergence_period_slow;
 elseif Hall_Range_B >= Hall_over_range && Hall_Convergence_Timer_Max_B == 0;
 % Fast Convergence
 Hall_Max_B(i) = Hall_Max_B(i-1) - Hall_convergence_rate;
 Hall_Convergence_Timer_Max_B = Hall_convergence_period_fast;
 elseif Hall_Range_B >= Hall_min_range && Hall_Convergence_Timer_Max_B == 0;
 % Slow Convergence
 Hall_Max_B(i) = Hall_Max_B(i-1) - Hall_convergence_rate;
 Hall_Convergence_Timer_Max_B = Hall_convergence_period_slow;
 endif

 % Minimum Tracking
 Hall_Range_A = max(Hall_Max_A(i) - Hall_Min_A(i-1),0);
 if Analog_Hall_A(i) <= Hall_Min_A(i-1)
 % 4xIIR Track minimum value
 Hall_Min_A(i) = (3*Hall_Min_A(i-1) + Analog_Hall_A(i))/4;
 elseif Hall_Range_A >= Hall_over_range && Hall_Convergence_Timer_Min_A == 0;
 % Fast Convergence
 Hall_Min_A(i) = Hall_Min_A(i-1) + Hall_convergence_rate;
 Hall_Convergence_Timer_Min_A = Hall_convergence_period_fast;
 elseif Hall_Range_A >= Hall_min_range && Hall_Convergence_Timer_Min_A == 0;
 % Slow Convergence
 Hall_Min_A(i) = Hall_Min_A(i-1) + Hall_convergence_rate;
 Hall_Convergence_Timer_Min_A = Hall_convergence_period_slow;
 endif

 Hall_Range_B = max(Hall_Max_B(i) - Hall_Min_B(i-1),0);
 if Analog_Hall_B(i) <= Hall_Min_B(i-1)
 % 4xIIR Track minimum value
 Hall_Min_B(i) = (3*Hall_Min_B(i-1) + Analog_Hall_B(i))/4;
 elseif Hall_Range_B >= Hall_over_range && Hall_Convergence_Timer_Min_B == 0;
 % Fast Convergence
 Hall_Min_B(i) = Hall_Min_B(i-1) + Hall_convergence_rate;
 Hall_Convergence_Timer_Min_B = Hall_convergence_period_fast;
 elseif Hall_Range_B >= Hall_min_range && Hall_Convergence_Timer_Min_B == 0;
 % Slow Convergence
 Hall_Min_B(i) = Hall_Min_B(i-1) + Hall_convergence_rate;
 Hall_Convergence_Timer_Min_B = Hall_convergence_period_slow;
 endif

 % Maintain Minimum Range
 if Hall_Max_A(i) - Hall_Min_A(i) < Hall_min_range
 % Maintain a minimum range between max and min
 Hall_Max_A(i) = Hall_Min_A(i) + Hall_min_range;
 endif
 if Hall_Max_B(i) - Hall_Min_B(i) < Hall_min_range
 % Maintain a minimum range between max and min
 Hall_Max_B(i) = Hall_Min_B(i) + Hall_min_range;
 endif

 % Update Hall Thresholds
 Hall_Mid_A = (Hall_Max_A(i) - Hall_Min_A(i))/2 + Hall_Min_A(i);
 Hall_Upper_Threshold_A(i) = Hall_Mid_A + Hall_hysteresis/2;
 Hall_Lower_Threshold_A(i) = Hall_Mid_A - Hall_hysteresis/2;

 Hall_Mid_B = (Hall_Max_B(i) - Hall_Min_B(i))/2 + Hall_Min_B(i);
 Hall_Upper_Threshold_B(i) = Hall_Mid_B + Hall_hysteresis/2;
 Hall_Lower_Threshold_B(i) = Hall_Mid_B - Hall_hysteresis/2;

 %--
 % Hall Sensor Logic Translation

© Electric Vehicle System Technology Page 38 of 41

 if State_Change_Lockout_Timer == 0
 % Digital Hall A
 if Analog_Hall_A(i) > Hall_Upper_Threshold_A(i)
 Digital_Hall_A(i) = 1;
 elseif Analog_Hall_A(i) < Hall_Lower_Threshold_A(i)
 Digital_Hall_A(i) = 0;
 else
 Digital_Hall_A(i) = Digital_Hall_A(i-1); % Hysteresis
 endif

 % Digital Hall B
 if Analog_Hall_B(i) > Hall_Upper_Threshold_B(i)
 Digital_Hall_B(i) = 1;
 elseif Analog_Hall_B(i) < Hall_Lower_Threshold_B(i)
 Digital_Hall_B(i) = 0;
 else
 Digital_Hall_B(i) = Digital_Hall_B(i-1);
 endif
 else
 State_Change_Lockout_Timer = State_Change_Lockout_Timer -1;
 Digital_Hall_A(i) = Digital_Hall_A(i-1);
 Digital_Hall_B(i) = Digital_Hall_B(i-1);
 endif

 %--
 % Quadrature Transition State Machine
 % Rotor Angle Correction

 if(Digital_Hall_A(i-1)==0 && Digital_Hall_B(i-1)==0 && Digital_Hall_A(i)==0 &&
Digital_Hall_B(i)==1)
 Rotor_Angle(i) = 190.07;
 Direction(i) = -1;
 State_Change = TRUE;
 elseif (Digital_Hall_A(i-1)==0 && Digital_Hall_B(i-1)==0 && Digital_Hall_A(i)==1 &&
Digital_Hall_B(i)==0)
 Rotor_Angle(i) = 280.07;
 Direction(i) = 1;
 State_Change = TRUE;
 elseif (Digital_Hall_A(i-1)==0 && Digital_Hall_B(i-1)==1 && Digital_Hall_A(i)==0 &&
Digital_Hall_B(i)==0)
 Rotor_Angle(i) = 190.07;
 Direction(i) = 1;
 State_Change = TRUE;
 elseif (Digital_Hall_A(i-1)==0 && Digital_Hall_B(i-1)==1 && Digital_Hall_A(i)==1 &&
Digital_Hall_B(i)==1)
 Rotor_Angle(i) = 100.07;
 Direction(i) = -1;
 State_Change = TRUE;
 elseif (Digital_Hall_A(i-1)==1 && Digital_Hall_B(i-1)==0 && Digital_Hall_A(i)==0 &&
Digital_Hall_B(i)==0)
 Rotor_Angle(i) = 280.07;
 Direction(i) = -1;
 State_Change = TRUE;
 elseif (Digital_Hall_A(i-1)==1 && Digital_Hall_B(i-1)==0 && Digital_Hall_A(i)==1 &&
Digital_Hall_B(i)==1)
 Rotor_Angle(i) = 10.07;
 Direction(i) = 1;
 State_Change = TRUE;
 elseif (Digital_Hall_A(i-1)==1 && Digital_Hall_B(i-1)==1 && Digital_Hall_A(i)==0 &&
Digital_Hall_B(i)==1)
 Rotor_Angle(i) = 100.07;
 Direction(i) = 1;
 State_Change = TRUE;
 elseif (Digital_Hall_A(i-1)==1 && Digital_Hall_B(i-1)==1 && Digital_Hall_A(i)==1 &&
Digital_Hall_B(i)==0)
 Rotor_Angle(i) = 10.07;
 Direction(i) = -1;
 State_Change = TRUE;
 else
 Rotor_Angle(i) = Rotor_Angle(i-1);
 Direction(i) = Direction(i-1);
 State_Change = FALSE;
 endif

© Electric Vehicle System Technology Page 39 of 41

 % Noise Filter
 % The intent is to lockout the state from changing rapidly due to noise.
 % A better implementation is to check if the state change is a reversal in "Direction". If so,
the state change
 % should be blocked from occurring for a minimum time period. If the motor is acculately
reversing direction, it would be
 % a relatively slow change and a minor delay would be very insignificant.
 if State_Change == TRUE;
 % Re-start state change lockout timer
 State_Change_Lockout_Timer = 3; % Time period yet to be determined. Added logic for
functional implementation.
 endif

 % Track State Machine Angle
 % This is merely for reference and not a functional requirement.
 % The state changes are recorded to later plot for visual reference.
 if State_Change == TRUE;
 Rotor_Angle_State_Machine(i) = Rotor_Angle(i);
 else
 Rotor_Angle_State_Machine(i) = Rotor_Angle_State_Machine(i-1);
 endif

 %--
 % Rotor Update
 % When a quadrature state change occurs, calculate the new angle update rate.
 % When no quadrature update, estimate new angle based on estimated rotor velocity

 if State_Change == TRUE
 % Rotor Angle has already been updated by state machine.
 if(Rotor_Last_Correction_Angle == -1)
 % Update rate cannot be deteremined until second sample
 Rotor_Angle_Velocity = 0;
 Rotor_Angle_Acceleration = 0;
 else
 % Save history
 Rotor_Angle_Velocity_1 = Rotor_Angle_Velocity; % Used for acceleration calculation
 % Calculate rotation delta since last state change
 if (Direction(i)==1)
 % Forward, Positive Rotation Angle
 if Rotor_Last_Correction_Angle < Rotor_Angle(i)
 dRotor_Angle = Rotor_Angle(i) - Rotor_Last_Correction_Angle;
 else
 dRotor_Angle = Rotor_Angle(i) - (Rotor_Last_Correction_Angle -360);
 end
 else
 % Reverse, Negative Rotation Angle
 if Rotor_Angle(i) < Rotor_Last_Correction_Angle
 dRotor_Angle = Rotor_Angle(i) - Rotor_Last_Correction_Angle;
 else
 dRotor_Angle = (Rotor_Angle(i)-360) - Rotor_Last_Correction_Angle;
 endif
 endif

 % Calculate new rate of angle change
 dRotor_Angle_Period = Time(i) - Rotor_Last_Correction_Time; % Period difference between
state machine updates
 Rotor_Angle_Velocity = dRotor_Angle / dRotor_Angle_Period; % Angle/second
 Rotor_Angle_Acceleration = (Rotor_Angle_Velocity -
Rotor_Angle_Velocity_1)/dRotor_Angle_Period; % Angle/second/second
 end
 % Update history for next calculation
 Rotor_Last_Correction_Angle = Rotor_Angle(i);
 Rotor_Last_Correction_Time = Time(i);

 else % State_Change == FALSE
 % Estimate Rotor Angle Update
 Period = Time(i) - Time(i-1);
 Rotor_Angle(i) = Rotor_Angle(i) + Rotor_Angle_Velocity * Period + Rotor_Angle_Acceleration *
Period^2 ;

© Electric Vehicle System Technology Page 40 of 41

 % Roll 360 boundary
 if(Rotor_Angle(i) > 360)
 Rotor_Angle(i) = Rotor_Angle(i) - 360;
 elseif (Rotor_Angle(i) < 0)
 Rotor_Angle(i) = Rotor_Angle(i) + 360;
 endif

 endif

 %--

end

%--
%--
% Plot Results

subplot(4,1,1);
plot(Time, Analog_Hall_A,'r'); hold on
plot(Time, Analog_Hall_B),'g';
plot(Time, Hall_Upper_Threshold_A,'-.r')
plot(Time, Hall_Lower_Threshold_A,'-.r')
%plot(Time, Hall_Upper_Threshold_B,'-.g')
%plot(Time, Hall_Lower_Threshold_B,'..g')
plot(Time, Hall_Max_A,'-.k');
plot(Time, Hall_Min_A,'-.k');
axis([min(Time) max(Time) 0 3.1]); grid
title(['Analog Hall Sensor Feedback - ',qd_title]);
legend('Analog Hall A', 'Analog Hall B', 'Upper Thres A','Lower Thres A', 'Max A','Min
A','location','southeast');
xlabel('Time');
ylabel('Voltage (V)');

subplot(4,1,2);
plot(Time, Digital_Hall_A); hold on
plot(Time, Digital_Hall_B)
axis([min(Time) max(Time) -0.1 1.1]); grid
set(gca,'ytick', [0 1]);
title('Quantised Hall Sensor Feedback');
legend('Digital Hall A', 'Digital Hall B','location','northwest');
xlabel('Time');
ylabel('Logic Level');

subplot(4,1,3);
plot(Time, Rotor_Angle_State_Machine); hold on
plot(Time ,Direction.*170+200);
plot(Time, ones(size(Time)).*360,'-.r')
plot(Time, ones(size(Time)).*0,'-.r')
axis([min(Time) max(Time) -10 380]); grid
set(gca,'ytick', [0:20:360]);
title('Quadrature Transistion State Table Output');
legend('Angle', 'Direction','location','northwest');
xlabel('Time');
ylabel('Electrical Rotor Angle (degrees)');

subplot(4,1,4);
plot(Time, ones(size(Time)).*360,'-.r'); hold on;
plot(Time, ones(size(Time)).*0,'-.r')
rotor_angle_analog = zeros(size(Time));
ra = (360/(2*pi())).*acos((2.*(Analog_Hall_A - Hall_Zero_Reference)./(1.1)));
rb = (360/(2*pi())).*asin((2.*(Analog_Hall_B - Hall_Zero_Reference)./(1.1)));
for i=2:size(Time,1)
 if(Analog_Hall_A(i) > Hall_Zero_Reference && Analog_Hall_B(i) > Hall_Zero_Reference)
 rotor_angle_analog(i) = rb(i);
 elseif (Analog_Hall_A(i) > Hall_Zero_Reference && Analog_Hall_B(i) < Hall_Zero_Reference)
 rotor_angle_analog(i) = rb(i)+360;
 elseif (Analog_Hall_A(i) < Hall_Zero_Reference && Analog_Hall_B(i) > Hall_Zero_Reference)
 rotor_angle_analog(i) = ra(i);
 else
 rotor_angle_analog(i) = 360-ra(i);
 endif

© Electric Vehicle System Technology Page 41 of 41

end
plot(Time,rotor_angle_analog,'m-.');
plot(Time, Rotor_Angle);
legend('Angle Generated','Angle (Analog)','location','northwest');
axis([min(Time) max(Time) -10 370]); grid
set(gca,'ytick', [0:20:360]);
title('Rotor Angle');
xlabel('Time');
ylabel('Electrical Rotor Angle (degrees)');

%subplot(4,1,1); v=axis; axis([3.0 3.3 v(3) v(4)])
%subplot(4,1,2); v=axis; axis([3.0 3.3 v(3) v(4)])
%subplot(4,1,3); v=axis; axis([3.0 3.3 v(3) v(4)])
%subplot(4,1,4); v=axis; axis([3.0 3.3 v(3) v(4)])

<end of report>

